Contents
Subject Code: 1031
cgljfo{ ul0ft
( COMPULSORY MATHEMATICS)
kf7\oj|md - @)&* (Syllabus - 2080) sIff
M !) (Grade 10)
PsfO 1: ;d"x (Unit 1: Sets) 12
Periods
1.1 ;d"xx¿sf] ;+of]hg,
k|ltR5]bg, k"/s / km/s lj|mofx¿ k|of]u x'g] tLg ;d"x;Ddsf b}lgs
hLjgsf Jofjxfl/s ;d:ofx¿sf] ;dfwfg -e]glrqsf] k|of]u;lxt_
(Solving practical problems related to daily life
including up to 3 sets by using different operations of sets; Union,
intersection, complement and difference of sets (using Venn-diagram ).
PsfO 2: cª\sul0ft (Unit II: Arithmetic) 28
Periods
2.1 rj|mLo Aofh -jflif{s a9Ldf #
jif{;Dd, cw{jflif{s a9Ldf @ jif{;Dd / q}dfl;s a9Ldf ! jif{;Dd_
(Compound interest (annual at most 3 years, semi-annual
at most 2 years and quartely at most 1 year )
2.2 j[l4 / x|f; (Growth
and Depreciation )
2.3 d'›f / ljlgdo b/ (
Currency and Exchangle Rate )
PsfO 3: If]qldlt (Unit III: Mensuration) 28
Periods
3.1 ;dsf]0fLo lk/fld8sf] ;txsf]
If]qkmn / cfotg ( j[Q / ju{ cfwf/ ePsf] )
Surface
area and volume of a right pyramid having a circular and square base
3.2 a9Ldf b'O{cf]6f 7f];
j:t'x¿af6 ag]sf] ;+o'St 7f]; j:t'x¿sf] ;txsf] If]qkmn / cfotg
Surface area and volume of combined solid objects made up
of at most two objects.
3.3 ljleGg 7f]; j:t' jf HofldtLo
cfsf/x¿sf u'0fsf] k|of]uaf6 nfut cg'dfg;DaGwL ;d:ofx¿
Problems related to cost estimation by the application of
properties of different solid or geometrical shapes.
PsfO 4: aLhul0ft (Unit IV: Algebra) 32
Periods
4.1 cg'j|md / >]0fL (Sequence
and Series )
♠ cª\s
ul0ftLo cg'j|md / >]0fLsf] -dWodfgx¿ / of]ukmn_
Mean and sum of arithmetic sequence
and series
♠ HofldtLo cg'j|md / >]0fLsf] dWodfgx¿ / ;Lldt kbx¿sf] of]ukmn
Means and sum of finite terms of
geometric sequence and series.
4.2 ju{ ;dLs/0fsf] xn -v08Ls/0f, ju{ k"/f ug]{ /
;"q k|of]u ljlwaf6 xn_
Solving Quadratic Equation (by factorization, completing the
square and using the formula method )
4.3 aLhLo leGgx¿sf] ;/nLs/0f -a9Ldf tLg leGg;Dd_
Simplification of algebraic fractions ( at most 3
fractions )
4.4 3ftfª\s o'St ;dLs/0f (
Exponential Equation )
PsfO 5: Hofldlt (Unit V: Geometry) 28
Periods
5.1 qe'h / rt'{e'hsf] If]qkmn (Area
of Triangle and Quadrilateral)
♠ Pp6}
cfwf/ / pxL ;dfgfGt/ /]vfx¿lar /x]sf ;dfgfGt/ rt'{e'hx¿, lqe'hx¿ tyf ;dfgfGt/
rt'e'{h / lqe'hx¿sf] If]qkmnsf] ;DaGw - ;}4flGts k|df0f_
Relation of area of parallelograms,
triangles - parallelograms and triangles standing on same base and between the
same parallels ( Theoretical proof only )
♠ lqe'h / ;dfgfGt/ rt'e'{hsf] If]qkmn ;DaGwL ;d:ofx¿
Problems related to area of triangle
and parallelogram.
5.2 a/fa/ If]qkmn x'g] lqe'h /
rt'e'{hsf] /rgf
Construction of triangle and quadrilaterals with equal
areas
♠ a/fa/ If]qkmn ePsf b'O{cf]6f ;dfgfGt/ rt'e'{hsf] /rgf
Construction of two parallelograms
having equal area
♠ a/fa/ If]qkmn ePsf lqe'hsf]
/rgf
Construction of two triangles having
equal area
♠ a/fa/ If]qkmn x'g] ;dfgfGt/
rt'e'{h / lqe'hsf] /rgf
Construction of parallelogram and
triangle having equal area
♠ lbOPsf] rt'e'{h;Fu a/fa/
If]qkmn x'g] lqe'hsf] /rgf
Construction of triangle equal in
area to a given quadrilateral.
5.3 j[Q (Circle)
♠ j[Qsf] s]Gb|Lo sf]0f, kl/lw
sf]0f / tL sf]0f kl/j]li7t ug]{ rfklarsf] ;DaGw -cjwf/0ff dfq_
Relation between central angle,
inscribed angle and its corresponding arc (concept only)
♠ Pp6} rfkdf cfwfl/t s]Gb|Lo
sf]0f / kl/lw sf]0fx¿larsf] ;DaGw
Relation between central angle and
inscribed angle standing on same arc
♠ rj|mLo rt'e'{hsf ;Dd'v sf]0fx¿ larsf] ;DaGw
Relation between the opposite angles
of a cyclic quadrilateral
♠ j[Qsf sf]0f / rfksf tYox¿;Fu
;DalGwt ;d:ofx¿
Problems related to a fact of angles
and arc of a circle
PsfO 6: tYofª\szf:q / ;DefJotf (Unit VI : Statistics and Probability) 24
Periods
6.1 tYofª\szf:q (Statistics)
♠ juL{s[t tYofª\ssf] dWos,
dlWosf, /Lt - Pp6f dfq cfpg] _ / rt'yf{Fzx¿
Mean, median, mode (only one) and
quartiles of grouped data.
6.2
;DefJotf (Probability)
♠ ;DefJotfsf] hf]8 l;4fGt (Addition
law of probability)
♠ cgfl>t / k/fl>t 36gf,
;DefJotfsf] u'0fg l;4fGt
( Independent and Dependent events,
Multiplication Principle of Probability )
♠ ;DefJotfsf] j[Iflrq / ;DalGwt
;d:ofx¿ - tLg 36gfdf b'O{ tx / b'O{ 36gfdf tLg tx;Dd dfq_
Probability tree diagram and related
problems (two stages only for three events and three stages only for two
events)
PsfO 7: lqsf]0fldlt (Unit VII: Trigonometry) 8
Periods
♠ prfO / b'/L -Pp6f dfq cjglt
sf]0f jf pGgtf+z sf]0f ;dfj]z ePsf]_
Height and distance (Only one angle
of elevation or angle of depression is given)
(ii) Specification
Grid
ljlzi6Ls/0f
tflnsf
(Test specification chart)
Grade (9 - 10) 2078
Subject:
Mathematics Time: 3 hours F.M.: 75
|
S.N. |
Areas |
Total working hours |
Knowledge |
Understanding |
Application |
Higher abiity |
Total number of items |
Total number of questions |
Total marks |
||||
|
Number of items |
Marks |
Number of items |
Marks |
Number of items |
Marks |
Number of items |
Marks |
||||||
|
1. |
Sets |
12 |
1 |
1 |
1 |
1 |
1 |
3 |
1 |
1 |
4 |
1 |
6 |
|
2. |
Arithmetic |
28 |
2 |
2 |
2 |
3 |
3 |
5 |
2 |
3 |
9 |
3 |
13 |
|
3. |
Mensuration |
28 |
2 |
2 |
2 |
3 |
2 |
5 |
2 |
3 |
8 |
3 |
13 |
|
4. |
Algebra |
32 |
2 |
2 |
2 |
4 |
3 |
7 |
1 |
2 |
8 |
3 |
15 |
|
5. |
Geometry |
28 |
2 |
2 |
2 |
3 |
2 |
5 |
2 |
3 |
8 |
3 |
13 |
|
6. |
Stastics and Probability |
24 |
2 |
2 |
2 |
3 |
2 |
4 |
2 |
2 |
8 |
2 |
11 |
|
7. |
Trigonometry |
8 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
4 |
1 |
4 |
|
|
|
160 |
12 |
12 |
12 |
18 |
14 |
30 |
11 |
15 |
49 |
16 |
75 |
b|i6JoM
♠ k|Zgkq lgdf{0f ubf{ k|To]s If]qdf
/ ;du|df 1fg, af]w, k|of]u / pRr bIftfsf nflu tf]lsPcg';f/sf] ef/ ldn]sf]
x'g'kb{5 . t/ ;+1fgfTds txdf @ cª\s;Dd 36a9 x'g ;Sg] 5 .
♠ ;Gbe{ lbP/ k|Zgx¿ lgdf{0f
ug'{kg]{ 5 . k|To]s k|Zgdf PseGbf a9L ;+1fgfTds txsf pkk|Zgx¿ ;dfj]z ug{ ;lsg]
5 .
♠ Application / Higher ability txsf k|Zgx¿ lgdf{0f ubf{ ;DalGwt If]qsf cnfjf cGo If]qsf
ljifoj:t';Fu ;DalGwt k|Zgx¿ klg /xg ;Sg] 5g\ .
♠ x/]s If]qcGtu{t /x]sf ;a}
pkIf]qsf ljifoj:t'x¿ ;dfg'kflts ¿kdf ;dfj]z x'g] u/L k|Zgx¿ lgdf{0f ug'{kg]{ 5
.
10. (a) xn ug'{xf];\ (Solve):
(b) ;/n ug'{xf];\ (Simplify): \( \frac{m+b}{m-b} + \frac{m-b}{m+b} - \frac{m^2+b^2}{m^2-b^2} \)
0 Comments