Multiple Angles

1. (a) Define multiple angle with an example.
 
1. (b) Write \( \cos2A \) in terms of \( \cos A \) and \( \sin A \)

 

2. (a) Write \( \sin 2A \) in terms of \( \tan A \)

 

2(b) Write \( \tan^2 A \) in terms of \( \cos2A \)

2(c) Write \( \sin3A \) in terms of \( \sin A \).

2(d) Write \( \tan3θ \) in terms of \( \tan \theta \)

3.(a) If \( \sin A = \frac{3}{5} \), find the value of \( \cos 2A \).

 

3. (b) If \( \sin 2A = \frac{ 24}{25} \) and \( \sin A = \frac{4}{5} \) , then find the value of \( \cos A \).

3(c) If \( \sin A = \frac{4}{5} \), find the value of \( \sin 2A \).

3(d) If \( \cos \theta = \frac{12}{13} \), find the value of \( \sin 2\theta \) and \( \cos 2\theta \).

 

3(e) If \( \tan \theta = \frac{3}{4} \), find the value of \( \sin 2\theta \) and \( \tan 2\theta \)

3. (f) If \( \sin \alpha = \frac{1}{2} \), find the value of \( \sin 3\alpha \) and \( \cos 3\alpha \)

3. (g) If \( \cos \alpha = \frac{ \sqrt{3}}{2} \), find the value of \( \sin 3\alpha \) and \( \cos 3\alpha \)

 

3. (h) If \( \tan \beta = \frac{1}{2} \), find the value of \( \tan 3\beta \).

4. (a) If \( \cos 2A = \frac{7}{25} \), then show that \( \sin A = \frac{3}{5} \)

4.(b) If \( \cos 2A = - \frac{ 1}{2} \), then show that \( \cos A = \frac{1}{2} \).

5. (a) Prove that: \( \sin A = \pm \sqrt{\frac{1-\cos 2A}{2}} \)

5. (b) Prove that: \( \cos A = \pm \sqrt{\frac{1+\cos 2A}{2}} \)

5. (c) Prove that: \( \tan A = \pm \sqrt{\frac{1-\cos 2A}{1+\cos 2A }} \)

5. (d) Prove that: \( \sec 2A = \frac{\cot^2 A + 1}{ \cot^2 A -1 } \)

 

6. (a) \( \frac{\sin 2A}{1+\cos 2A } = \tan A \)

6(b) \( \frac{ 1 -\cos 2A }{ \sin 2A } = \tan A \)

6. (c) \( \frac{\sin 2A}{ 1-\cos 2A} = \cot A \)

6. (d) \( \frac{ 1-\cos 2\theta }{1+\cos 2\theta} = \tan^2 \theta \)

6. (e) \( \frac{1-\tan \alpha}{1+\tan \alpha}=\frac{1-\sin 2\alpha}{\cos 2\alpha} \)

6. (f) \( \frac{ \cos 2\theta}{1+\sin 2\theta } = \frac{ 1-\tan \theta}{1+ \tan \theta} \)

6. (g) \( \frac{\sin \theta + \sin 2\theta}{1+\cos \theta + \cos 2\theta} = \tan \theta \)

6. (h) \( \frac{1+ \cos \beta + \cos 2\beta} {\sin \beta + \sin 2\beta } = \cot \beta \)

6. (i) \( \frac{1-\sin 2\alpha}{\cos 2\alpha} = \frac{ 1-\tan \alpha}{1+\tan \alpha} = \tan (45^{\circ} - \alpha ) \)

 

6. (j) \( \tan \theta + \cot \theta = 2\text{cosec} 2\theta \)

6. (k) \( \text{cosec } 2A - \cot 2A = \tan A \)

7. (a) \( \tan(45^{\circ} + \theta) = \sec 2\theta + \tan 2\theta \)

7. (b) \( 1 -\sin 2A = 2 \sin^2 (45^{\circ} - A) \)

7. (c) \( 2\cos^2 (45^{\circ} -\theta ) = 1+ \sin 2\theta \)

7. (d) \( \cos^2 ( 45^{\circ} -A) -\sin^2 (45^{\circ} -A) = \sin 2A \)

7. (e) \( \tan (A + 45^{\circ}) - \tan ( A - 45^{\circ}) = \frac{2(1+\tan^2 A)}{1-\tan^2 A} \)

7. (f) \( \frac{1+\tan^2 (45^{\circ}-\theta )}{1-\tan^2 (45^{\circ}-\theta )} = \text{ cosec } 2\theta \)

8. (a) If \( \cos\theta=\frac{1}{2}\left(a+\frac{1}{a}\right) \) then prove that: \( \cos2\theta=\frac{1}{2}\left(a^2+\frac{1}{a^2}\right). \)

8. (b) If \( \sin\theta=\frac{1}{2}\left(b+\frac{1}{b}\right) \), prove that:\(  \cos2\theta=-\frac{1}{2}\left(b^2+\frac{1}{b^2}\right) \)

8. (c) If \( \sin\beta=\frac{1}{2}\left(k+\frac{1}{k}\right) \) , show that \( \sin3\beta=-\frac{1}{2}\left(k^3+\frac{1}{k^3}\right) \)

9. (a) \( (\cos 2A -\cos 2B)^2 + (\sin 2A + \sin 2B)^2 = 4\sin^2 (A+B) \)

9. (b) \( (\sin 2A - \sin 2B)^2 + (\cos 2A + \cos 2B)^2 = 4\cos^2(A+B) \)

10. (a) Prove that: \( \cos^2\theta+\sin^2\theta.\cos2\alpha=\cos^2\alpha+\sin^2\alpha.\cos2\theta \)

10. (b) \( (1+\cos 2\theta + \sin 2\theta )^2 =4\cos^2 \theta(1+\sin 2\theta) \)

10. (c) Prove that: \( (2\cos A+1)(2\cos A-1)\left(2\cos2A-1\right)=1+ 2\cos4A \)

10. (d) \( 1+\cos 8 \theta = ( 2\cos 4\theta -1 ) (2\cos 2\theta -1)( 2\cos \theta -1) (2\cos \theta +1) \)

11. (a) Prove that: \( \cos^6\theta-\sin^6\theta=\frac{1}{4}\left(\cos^32\theta+3\cos2\theta\right) \)

11. (b) Prove that: \( \cos^6\theta+\sin^6\theta=\frac{1}{8}\left(5+3\cos4\theta\right) \)

11. (c) Prove that: \( \cos^8\theta+\sin^8\theta=1-\sin^22\theta+\frac{1}{8}\sin^42\theta \)

11. (d) Prove that: \( \frac{1}{\sin10^\circ}-\frac{\sqrt{3}}{\cos10^\circ} \)

11. (e) Prove that: \( \sqrt{3}\text{cosec }40^{\circ}+\sec40^{\circ}=4 \)

11. (f) Prove that:\( \sqrt{3}\text{cosec }20^{\circ}-\sec20^{\circ}=4 \)

12. (a) \( \frac{1}{\sin 2A} + \frac{ \cos 4A}{\sin 4A} = \cot A - \text{cosec } 4A \)

12. (b)\( \cot 8A +\text{cosec } 4A = \cot 2A - \text{cosec }8A \)

12. (c) Prove that: \( \frac{\sec4\theta-1}{\sec2\theta-1}=\tan4\theta\cot\theta \)

12. (d) Prove that: \( \displaystyle \frac{\sec8A-1}{\sec4A-1}=\frac{\tan8A}{\tan2A} \)

12. (e) Prove that: \( \tan\theta+2\tan2\theta+4\tan4\theta+8\cot8\theta=\cot\theta \)

13. (a) Prove that:

\( 4\left(\cos^310^\circ+\sin^320^\circ\right)=3\left(\cos10^\circ+\sin20^\circ\right) \)

13. (b) Prove that: \( \sin^3\theta\cos3\theta+\cos^3\theta\sin3\theta=\frac{3}{4}\sin4\theta \)

13. (c) Prove that:\( \cos^3\theta\cos3\theta+\sin^3\theta\sin3A=\cos^32\theta \)

13. (d) Prove that: \( \displaystyle \tan A + \tan \left(\frac{\pi^c}{3} \right) - \tan \left(\frac{\pi^c}{3} \right) \)

14 (a) If \( 2 \tan A = 3\tan B \) prove that \( \tan( A+ B)=\frac{5\sin2 B}{5\cos2 B-1} \)

14 (b) \( 2 \tan A = 3\tan B \) prove that: \( \tan ( A - B ) = \frac {\sin 2 B }{5-\cos 2 B} \)

15. (a) Prove that: \( \sin^4 A=\frac{1}{8}\left(3-4\cos2 A+\cos4 A\right) \)

15. (b) Prove that: \( \cos^4 A=\frac{1}{8}\left(3+4\cos2 A+\cos4 A\right) \)

15. (c) Prove that: \( \sin5\theta=16\sin^5\theta-20\sin^3\theta+5\sin \theta \)

15 (d) Prove that: \( \cos5A=16\cos^5A-20\cos^3A+5\cos A \)

16. With the help of multiple angles relation of Sine and Cosine, find the value of \( \sin18^{\circ}, \sin36^{\circ} \) and \( \sin54^{\circ} \). By using these values, find the values of \( \cos18^{\circ}, \cos36^{\circ} \) and \( \cos54^{\circ} \). Also, find the value of \( \tan18^{\circ}, \tan36^{\circ} \) and \( \tan54^{\circ} \) . Share your result to your friend and prepare combine report.

All The Best


Post a Comment

0 Comments